COMPUTER SCIENCE TRIPOS Part II – 2017 – Paper 7

7 Denotational Semantics (MPF)

- (a) (i) Define the notion of least pre-fixed point fix(f) of a continuous endofunction f on a domain and state Tarski's fixed point theorem for it. [2 marks]
 - (*ii*) State Scott's fixed point induction principle. [2 marks]
- (b) Let $f: D \to D$, $g: E \to E$, and $h: D \to E$ be continuous functions between domains such that $h \circ f = g \circ h : D \to E$. Show that if h is strict (that is, $h(\perp_D) = \perp_E$) then fix(g) = h(fix(f)). [4 marks]
- (c) Let Σ^* denote the set of strings over an alphabet Σ , and let $\mathcal{P}(\Sigma^*)$ be the domain of all subsets of Σ^* ordered by inclusion.

Consider the continuous functions

(union)	+	:	$\mathcal{P}(\Sigma^*) \times \mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma^*)$
(concatenation)		:	$\mathcal{P}(\Sigma^*) \times \mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma^*)$

given, for all $X, Y \subseteq \Sigma^*$, by

$$X + Y = \{ w \in \Sigma^* \mid w \in X \text{ or } w \in Y \}$$

$$X \cdot Y = \{ uv \in \Sigma^* \mid u \in X \text{ and } v \in Y \}$$

(i) Using part (b), or otherwise, show that, for all $A, B, C \subseteq \Sigma^*$,

(1)
$$\operatorname{fix}(\lambda X. C \cdot B + A \cdot X) = \operatorname{fix}(\lambda X. C + A \cdot X) \cdot B$$
 [4 marks]

(2)
$$\operatorname{fix}(\lambda X.A \cdot C + A \cdot B \cdot X) = A \cdot \operatorname{fix}(\lambda X.C + B \cdot A \cdot X)$$
 [4 marks]

(*ii*) For $P \subseteq \Sigma^*$, let $P^* \subseteq \Sigma^*$ be defined as

$$P^{\star} = \mathsf{fix}(\lambda X. E + P \cdot X)$$

where E denotes the singleton set $\{\varepsilon\}$ consisting of the empty string ε .

Using part (c)(i), or otherwise, show that, for all $S, T \subseteq \Sigma^*$,

$$(S \cdot T)^{\star} \cdot S = S \cdot (T \cdot S)^{\star}$$
 [4 marks]