
9

COMPUTER SCIENCE TRIPOS Part IB – 2017 – Paper 6

Semantics of Programming Languages (PMS)

Consider a language with abstract syntax

e ::= n | x | let x = e1 in e2 | alloc | free e | e1 := e2 | !e | e1; e2 | e1 + e2

This is intended to allow computation over data allocated in a concrete block of
memory: n ranges over a set W = {0, . . . , 232 − 1} of machine words, used both
as values and as addresses. A memory state is described by a total function
m : W → W , giving the value at each address, and a set a ⊆ W , identifying the
locations that are currently allocated. The term x ranges over a set of non-mutable
variables, not allocated in memory. The expression e := e ′, !e, alloc, and free e are
respectively assignment, dereferencing, allocation, and free of single words.

(a) Define a reasonable deterministic operational semantics for this language, as a
transition relation

〈e,m, a〉 −→ 〈e ′,m ′, a ′〉

and a predicate
〈e,m, a〉 error

that identifies the configurations that are runtime errors. You can omit the rules
for e1; e2 and e1 + e2 and the standard definition of substitution.

Your definition should ensure (though you need not prove) that for any
configuration 〈e,m, a〉, either e is a value n, or there is exactly one transition
〈e,m, a〉 −→ 〈e ′,m ′, a ′〉 from that configuration, or there is exactly one
derivation of a runtime error 〈e,m, a〉 error.

Note and explain your choices. [17 marks]

(b) One could rule out some of those runtime errors with a simple type system that
keeps addresses and the numbers used for arithmetic distinct, with types

T ::= address | number

and type rules that constrain assignment, dereferencing, allocation, free, and
arithmetic.

Discuss which of your runtime errors could be prevented by this. [3 marks]

1

