COMPUTER SCIENCE TRIPOS Part IB — 2017 — Paper 5
8 Concurrent and Distributed Systems (RN'W)

The developers of FictionalOS have an implementation of the Network File System
version 3 (NFSv3) without support for distributed locking. As a result, applications
experience race conditions when operating concurrently on files in NFS. Rather than
using the hideously complex NFS distributed locking protocol, the OS developers
decide to develop their own simpler locking mechanism (“How hard can it be?”).
They add two new NFS remote procedure calls (RPCs) that can be used on file nodes
in NF'S: NFS_LOCK and NFS_UNLOCK, which lock and unlock nodes, respectively. These
are implemented through simple atomic operations on the in-memory node data
structure representing a file on the NF'S file server:

nfs_lock(node) { nfs_unlock(node) {
atomic { atomic {
if (node->lock_held != 0) node->lock_held = 0;
return (FAILURE); return (SUCCESS);
node->lock_held = 1; }
return (SUCCESS); }
+
+

SunRPC retransmission ensures reliable delivery when packets are lost. If a client
receives FAILURE, it will issue new RPCs each second until it receives SUCCESS.

(a) Explain why, when server reboots, concurrent applications writing to files across
multiple nodes may suffer data races despite acquiring suitable locks, and
describe a solution to this problem. [4 marks]

(b) (i) Define at-least once RPC semantics. [1 mark]

(77) Explain why at-least once RPC semantics may cause trouble for each of
the NFS_LOCK and NFS_UNLOCK RPCs. [4 marks]

(¢) Explain why the polling nature of the NFS_LOCK RPC, as described, makes it
difficult to implement reliable server-side deadlock detection. [4 marks|

(d) (i) Define priority inheritance and explain what problem it solves. [2 marks]

(7) Describe the changes to the NFS_LOCK and NFS_UNLOCK RPCs necessary
to implement priority inheritance. Include any new RPC arguments and
return values. Explain the changes (and limitations) this imposes on
software implementations. [5> marks]



