COMPUTER SCIENCE TRIPOS Part IB — 2017 — Paper 5
7 Concurrent and Distributed Systems (RN'W)

SimplisticFS is an in-memory filesystem, implemented as a directed and (mostly)
acyclic graph in which nodes represent directories (which contain names and pointers
to other nodes, including a special entry named ¢ ¢. .’ that points back to its parent
node) or files (leaf nodes that contain data). The in-memory structure, with the
exception of ‘..’ entries in directories, is therefore a tree. SimplisticF'S does not
support hard links, and the ‘..’ of the root node points back to itself. Path
lookups start at the root node, and pathnames with multiple segments, separated
by “¢/’?, are implemented as lookup operations on successive nodes. For example,
opening ¢ ¢/foo/bar’’ will look up ‘ ‘foo’’ in the root, and then ¢ ‘bar’’ relative
to the foo node.

Fine-grained locking adds a read-write lock to each node to ensure safe concurrent
access. Operations for reading a directory entry (e.g., to list the contents or look up
a child), or for reading file data will: acquire the node lock for read; perform the
operation; and then release it. Operations for mutating a directory entry, (e.g., to
add or remove a child node of a directory), or for modifying file data will: acquire its
lock for write; perform the operation; and then release it. The lock implementation
permits read recursion, write recursion, and race-free lock upgrades from read to
write by threads.

(a) For (1) files and (i7) directories, explain, giving examples, how using a read-write
lock may improve performance compared to mutual exclusion. [4 marks]

(b) The developers discover that compound operations, such as recursive path
lookup, suffer from race conditions. They decide to adopt strict two-phase
locking across compound operations to resolve this problem.

(i) Define strict 2-phase locking and describe how to apply it. [4 marks]
(7) Explain why deadlock cannot occur prior to this change. [2 marks]

(73i) The new strategy suffers deadlocks when files are removed under high load.
Given that removing a file requires a write lock on its parent directory, give
an example of how a deadlock might occur. [4 marks]

(¢) Moving from a “giant lock” to this finer-grained model focused on files and
directories improves performance for some but not all workloads.

(i) Describe and explain an example of a workload in which file-granularity
locking is unlikely to eliminate lock contention. [2 marks]

(ii) Propose a more granular locking strategy to improve parallelism with
respect to (¢)(i). Describe the potential performance benefit with respect
to that workload, and additional overhead that might be incurred.

[4 marks|



