9 Discrete Mathematics (MPF)

(a) Let \(r \) and \(s \) be solutions to the quadratic equation \(x^2 - bx + c = 0 \).

For \(n \in \mathbb{N} \), define
\[
\begin{align*}
 d_0 &= 0 \\
 d_1 &= r - s \\
 d_n &= b d_{n-1} - c d_{n-2} \quad (n \geq 2)
\end{align*}
\]
Prove that \(d_n = r^n - s^n \) for all \(n \in \mathbb{N} \). [4 marks]

(b) Recall that a commutative monoid is a structure \((M, 1, *)\) where \(M \) is a set, \(1 \) is an element of \(M \), and \(* \) is a binary operation on \(M \) such that
\[
\begin{align*}
 x * 1 &= x \\
 x * y &= y * x \\
 (x * y) * z &= x * (y * z)
\end{align*}
\]
for all \(x, y, z \) in \(M \).

For a commutative monoid \((M, 1, *)\), consider the structure \((\mathcal{P}(M), I, \oplus)\) where \(\mathcal{P}(M) \) is the powerset of \(M \), \(I \) in \(\mathcal{P}(M) \) is the singleton set \(\{1\} \), and \(\oplus \) is the binary operation on \(\mathcal{P}(M) \) given by
\[
X \oplus Y = \{ m \in M \mid \exists x \in X. \exists y \in Y. m = x * y \}
\]
for all \(X \) and \(Y \) in \(\mathcal{P}(M) \).

Prove that \((\mathcal{P}(M), I, \oplus)\) is a commutative monoid. [10 marks]

(c) Define a section-retraction pair to be a pair of functions \((s : A \to B, r : B \to A)\) such that \(r \circ s = \text{id}_A \).

(i) Prove that for every section-retraction pair \((s, r)\), the section \(s \) is injective and the retraction \(r \) is surjective. [4 marks]

(ii) Exhibit two sets \(A \) and \(B \) together with an injective function \(f : A \to B \) such that there is no function \(g : B \to A \) for which \((f, g)\) is a section-retraction pair. [2 marks]