8 Hoare Logic and Model Checking (AM)

This question considers a language \(L \) which has integer variables \(V \), arithmetic expressions \(E \) and boolean expressions \(B \), along with commands \(C \) of the forms \(V := E \) (assignment), \(C ; C' \) (sequencing), \(\text{IF } B \text{ THEN } C \text{ ELSE } C' \) (conditional) and \(\text{WHILE } B \text{ DO } C \) (iteration).

(a) Explain the syntax of the Hoare-logic partial-correctness formula \(\{ P \} C \{ Q \} \) and give a careful definition in English of when it is valid, that is, when \(\models \{ P \} C \{ Q \} \).

(b) How does the definition of validity for the total-correctness formula \([P] C [Q] \) differ?

(c) Preconditions and postconditions in \(\{ P \} C \{ Q \} \) often make use of logical or auxiliary variables \(v \) in addition to program variables \(V \). Explain why this is useful illustrating your answer with a command \(C \) which satisfies \(\{ T \} C \{ R = X + Y \} \) but not \(\{ X = x \land Y = y \} C \{ R = x + y \} \).

(d) Give the axioms and rules of an inference system \(\vdash \{ P \} C \{ Q \} \) for Hoare logic.

(e) Are your rules sound? To what extent are they complete?

(f) Give a formal proof, using your inference system, of
\(\{ X = x \land Y = 3 \} X := X + 1 \{ X - 1 = x \land Y < 10 \} \).

(g) Consider the command \(C \) given by \(\text{WHILE } X > 0 \text{ DO } (X := X - 1; Y := Y + 3) \), and let \(P \) be the precondition \(X = x \land Y = y \land x \geq 0 \). Give the strongest postcondition \(Q \) that you can establish. Give any invariant necessary to prove \(\{ P \} C \{ Q \} \) for your \(Q \). Explain briefly how the structure of the proof relates to the structure of \(C \).