9 Security II (MGK)

You are working on an encryption device with your new colleague, Mallory Baish, who proposes that you use a pseudo-random generator

\[r_i = h_1(s_i), \quad s_{i+1} = h_2(s_i) \]

where \(s_0 \in G \) is the random initial state and the other \(s_i \in G \) are subsequent internal states, all invisible to adversaries. The \(h_1, h_2 : G \to G \) are two secure one-way functions.

Adversaries may see any of the past outputs \(r_0, \ldots, r_{n-1} \). If they can predict from those, with non-negligible probability, the next value \(r_n \), then the security of your device will be compromised.

(a) Give a rough estimate for the probability that an adversary can predict \(r_n \), as a function of \(n \) and \(|G|\). Explain your answer. \([6\text{ marks}]\)

(b) Mallory also suggests a specific implementation:

\[h_1(x) = f(u^x \mod p) \quad p = \text{a 2056-bit prime number} \]
\[h_2(x) = f(v^x \mod p) \quad u, v = \text{two numbers from } Z_p^* \]
\[f(x) = x \mod 2^{2048} \quad G = Z_{2^{2048}} \]

(i) The constants \(p, u \) and \(v \) will be known to the adversary. What conditions should they fulfill so that \(h_1 \) and \(h_2 \) can reasonably be described as one-way functions, and how would you normally generate suitable numbers \(u \) and \(v \)? [Hint: quadratic residues] \([4\text{ marks}]\)

(ii) If \(f \) were replaced with the identity function, how could an adversary distinguish the \(r_i \) emerging from this pseudo-random generator from a sequence of elements of \(Z_p^* \) picked uniformly at random? \([4\text{ marks}]\)

(iii) After you choose a value for \(p \), Mallory urges you to use two particular values for \(u \) and \(v \) generated in your absence. You briefly see “\(v = u^e \mod p \)” scribbled on a whiteboard. You become suspicious that Mallory is trying to plant a secret backdoor into your pseudo-random generator.

Explain how Mallory could exploit such a backdoor. \([6\text{ marks}]\)