7 Mathematical Methods for Computer Science (JGD)

(a) An inner product space \(E \) containing piecewise continuous complex functions \(f(x) \) and \(g(x) \) on some interval is spanned by the orthonormal basis functions \(\{ e_i \} \) used in the Fourier series. Thus complex coefficients \(\{ \alpha_i \} \) and \(\{ \beta_i \} \) exist such that
\[
 f(x) = \sum_i \alpha_i e_i(x) \quad \text{and} \quad g(x) = \sum_i \beta_i e_i(x).
\]

(i) Show that \(\langle f, g \rangle = \sum_i \alpha_i \overline{\beta_i} \). [5 marks]

(ii) Would the same result hold if the orthonormal basis functions \(\{ e_i \} \) that span \(E \) were not the Fourier basis? Justify your answer, and provide the name for coefficients \(\{ \alpha_i \} \) and \(\{ \beta_i \} \) in such a case. [2 marks]

(b) Consider a sequence \(f[n] \) \((n = 0, 1, \ldots, 15)\) with Fourier coefficients \(F[k] \) \((k = 0, 1, \ldots, 15)\). Using the 16\(^{th}\) roots of unity as labelled around the unit circle in powers of \(w^1 \), the primitive 16\(^{th}\) root of unity, construct a sequence of these \(w^i \) that could be used to compute \(F[3] \). [4 marks]

(c) From the well-known fact that a periodic square wave \((f(x) = 1 \text{ for } 0 < x < \pi, \quad f(x) = -1 \text{ for } \pi < x < 2\pi, \ldots)\) has the following Fourier series
\[
 f(x) = \frac{4}{\pi} \left[\sin(x) + \frac{\sin(3x)}{3} + \frac{\sin(5x)}{5} + \frac{\sin(7x)}{7} + \cdots \right]
\]
produce the first four terms of the Fourier series for the triangle wave whose derivative is this square wave. [4 marks]

(d) What sets of frequencies are required to perform the following analyses?

- Fourier transform of a non-periodic continuous function
- Fourier analysis of a piecewise continuous periodic function with period \(2\pi \)
- Wavelet transform of a non-periodic function, either continuous or discrete

Comment on the relationship between the density of frequencies required and the role of “locality” in the analysis. [5 marks]