We assume that for each base table \(R \) in a relational database we have two update operations: \(\text{insert}(R, t) \) which inserts tuple \(t \) into table \(R \) if \(t \) does not violate any of the constraints declared for \(R \) (fails otherwise), and \(\text{delete}(R, p) \) which deletes all records in \(R \) satisfying predicate \(p \) (and fails if this would violate referential integrity constraints). Update operations are combined in programs to define transactions with ACID guarantees.

Suppose that we have defined a view \(V = Q(R_1, R_2, \ldots, R_n) \), where the \(R_i \) indicate the base tables used in query \(Q \). The designers of a new database system want to allow users to update directly such a view. That is, if we have an update of the form \(U = \text{insert}(V, t) \) or \(U = \text{delete}(V, p) \), then the database system must automatically generate a transaction \(T_U \) over the tables \(R_i \) such that for any database instance \(DB \) this diagram commutes:

\[
\begin{array}{c}
DB \\ \xrightarrow{T_U} \hspace{1cm} DB' \\
\downarrow Q \\
V \\ \xrightarrow{U} \hspace{1cm} V'
\end{array}
\]

In other words, applying the update \(U \) directly to a view (as if it were a base table) produces the same result as applying \(T_U \) to the database and then evaluating the view query.

A major problem with this approach is that there may be multiple distinct solutions for \(T_U \). We explore this now.

\((a) \) Explain the difference between a database query and a database view. [2 marks]

\((b) \) Let \(V = \pi_X(R) \) be a view for some base table \(R \) and some subset \(X \) of \(R \)'s attributes \(Y \). How could this be translated into the desired transaction \(T_U \)? Discuss any problems with ambiguity that may arise. [5 marks]

\((c) \) Let \(V = \sigma_q(R) \) be a view for some base table \(R \) and predicate \(q \). How could this be translated into the desired transaction \(T_U \)? Discuss any problems with ambiguity that may arise. [5 marks]

\((d) \) In the design of a database schema it was discovered that a relation \(R \) violated Boyce-Codd normal form, and so it was replaced by two base tables \(R_1 \) and \(R_2 \) resulting from the standard decomposition process. Suppose users attempt to reconstruct the original relation using the view \(V = R_1 \bowtie R_2 \). Discuss the problems that might arise now in the construction of transaction \(T_U \) for updates to \(V \). [8 marks]