2 Digital Electronics (IJW)

(a) Draw a diagram showing the structure of an n-channel MOSFET and describe how the Drain to Source current can be controlled. [4 marks]

(b) Draw the circuit diagram of a NOT gate that comprises an n-channel MOSFET and a resistor R. [2 marks]

(c) For the NOT gate in part (b), plot the relationship between the input voltage, V_{in}, and the output voltage, V_{out}. The power supply voltage, $V_{DD} = 10 \, \text{V}$, $R = 500 \, \Omega$, and the MOSFET has the characteristics given in the following figure. [6 marks]

(d) For the NOT gate in part (c), calculate the power dissipated by resistor R when $V_{in} = 8 \, \text{V}$. [3 marks]

(e) (i) Describe how the power dissipated by resistor R can be reduced. State any potential problems with your proposed solution. [3 marks]

(ii) Present a modified circuit for a NOT gate that eliminates the problem of static power dissipation in resistor R. [2 marks]