COMPUTER SCIENCE TRIPOS Part II – 2014 – Paper 9

4 Denotational Semantics (MPF)

Let τ be a PCF type.

(a) Consider the PCF terms

given by the following definitions

Show that

$$\llbracket \mathbf{fn} \, s : nat \to \tau. \, \mathbf{tail}(\mathbf{tail}(\mathbf{repeat} \, s)) \rrbracket = \llbracket \mathbf{fn} \, s : nat \to \tau. \, \mathbf{repeat}(\mathbf{tail} \, s) \rrbracket$$

in the domain $((\mathbb{N}_{\perp} \to \llbracket \tau \rrbracket) \to (\mathbb{N}_{\perp} \to \llbracket \tau \rrbracket)).$ [6 marks]

(b) Define a closed PCF term

shuffle :
$$(nat \to \tau) \to (nat \to \tau) \to nat \to \tau$$

such that

$$\begin{bmatrix} \mathbf{head} \end{bmatrix} (\begin{bmatrix} \mathbf{shuffle} \end{bmatrix} s t) = \begin{bmatrix} \mathbf{head} s \end{bmatrix} \\ \begin{bmatrix} \mathbf{tail} \end{bmatrix} (\begin{bmatrix} \mathbf{shuffle} \end{bmatrix} s t) = \begin{bmatrix} \mathbf{shuffle} \end{bmatrix} t (\begin{bmatrix} \mathbf{tail} \end{bmatrix} s) \\ \end{bmatrix}$$

[5 marks]

for all $s, t \in (\mathbb{N}_{\perp} \to \llbracket \tau \rrbracket)$. Briefly justify your answer.

(c) (i) Define the notion of least pre-fixed point fix(f) in a domain D of a continuous function f in the function domain $(D \to D)$. [3 marks]

(*ii*) Prove that

$$\llbracket \mathbf{repeat} \rrbracket \sqsubseteq \llbracket \mathbf{fn} \, s : nat \to \tau. \, \mathbf{shuffle} \, s \, s \rrbracket$$

in the domain $\left((\mathbb{N}_{\perp} \to \llbracket \tau \rrbracket) \to (\mathbb{N}_{\perp} \to \llbracket \tau \rrbracket) \right).$ [6 marks]