COMPUTER SCIENCE TRIPOS Part II – 2014 – Paper 7

6 Denotational Semantics (MPF)

For partially ordered sets (P, \sqsubseteq_P) and (Q, \sqsubseteq_Q) , define the set

 $(P \Rightarrow Q) = \{f \mid f \text{ is a monotone function from } (P, \sqsubseteq_P) \text{ to } (Q, \sqsubseteq_Q)\}$

and, for all $f, g \in (P \Rightarrow Q)$, let

$$f \sqsubseteq_{(P \Rightarrow Q)} g \iff \forall p \in P. f(p) \sqsubseteq_Q g(p)$$

(a) Let (P, \sqsubseteq_P) and (Q, \sqsubseteq_Q) be partially ordered sets.

- (i) Prove that $((P \Rightarrow Q), \sqsubseteq_{(P \Rightarrow Q)})$ is a partially ordered set. [4 marks]
- (*ii*) Prove that if (Q, \sqsubseteq_Q) is a domain then so is $((P \Rightarrow Q), \sqsubseteq_{(P \Rightarrow Q)})$.

[6 marks]

- (b) For \mathbb{N} the set of natural numbers partially ordered by the equality relation and for S_{\perp} the flat domain determined by a set S, consider the domain $((\mathbb{N} \Rightarrow S_{\perp}), \sqsubseteq_{(\mathbb{N} \Rightarrow S_{\perp})}).$
 - (i) A function $f \in (\mathbb{N} \Rightarrow S_{\perp})$ is said to be *finite* whenever the subset of \mathbb{N} given by $\{n \mid f(n) \neq \bot\}$ is finite.

Show that every function in $(\mathbb{N} \Rightarrow S_{\perp})$ is the least upper bound of a countable chain of finite functions. [4 marks]

(*ii*) For a domain (D, \sqsubseteq) , an element $d \in D$ is said to be *isolated* (with respect to \sqsubseteq) whenever, for all countable chains $(x_0 \sqsubseteq \cdots \sqsubseteq x_n \sqsubseteq \cdots)$ in D with $d \sqsubseteq \bigsqcup_{n>0} x_n$, there exists $m \ge 0$ with $d \sqsubseteq x_m$.

Prove that a function in $(\mathbb{N} \Rightarrow S_{\perp})$ is isolated (with respect to $\sqsubseteq_{(\mathbb{N} \Rightarrow S_{\perp})}$) iff it is finite. [6 marks]