
9

COMPUTER SCIENCE TRIPOS Part IB – 2014 – Paper 6

Semantics of Programming Languages (PMS)

Consider the concurrent imperative language L with syntax and conventional
operational semantics as below.

statement , s ::= skip | x := e; s | let r = x in s | let r = op(e1, ..., en) in s
| if (e1 = e2) s else s ′

expression, e ::= r | v

process , p ::= tid :s | p|p ′

label , l ::= Wx=v | Rx=v | τ | tid :l | Lx

Here x and r range over shared and thread-local variables, op over built-in operators,
v over values 0, 1, . . ., tid over thread ids a, b, Let m range over memory states,
functions from shared variables to values. In the lets, r binds in s .

s
l−→ s ′

x := v ; s
Wx=v−−−−→ s

wr
let r = x in s

Rx=v−−−→ {v/r}s
rd

if (v = v) s else s ′ τ−→ s
if1

v 6= v ′

if (v = v ′) s else s ′ τ−→ s ′
if2

v = [[op]](v1, . . . , vn)

let r = op(v1, ..., vn) in s
τ−→ {v/r}s

op

p
l−→ p ′

s
l−→ s ′

tid :s
tid :l−−→ tid :s ′

thread
p1

l−→ p ′
1

p1|p2
l−→ p ′

1|p2

par1
p2

l−→ p ′
2

p1|p2
l−→ p1|p ′

2

par2

p,m
l−→ p ′,m ′

p
tid :Wx=v−−−−−−→ p ′

p,m
tid :Wx=v−−−−−−→ p ′,m ⊕ {x 7→ v}

Swr

m(x) = v

p
tid :Rx=v−−−−−→ p ′

p,m
tid :Rx=v−−−−−→ p ′,m

Srd
p

tid :τ−−→ p ′

p,m
tid :τ−−→ p ′,m

Stau

Say p,m has a data race if there is a sequence of transitions p,m
l1−→ . . .

ln−→ l−→ l′−→ where
l and l′ conflict : they are reads or writes to the same location, at least one is a write,
and they are by different threads.

[continued . . .]

1

(a) Give a p for which p,m0 has a data race. [1 mark]

(b) A vector clock c is a function from thread ids to natural numbers, identifying
the c(tid)’th transition of each thread tid . Modify the semantics above to add
a vector clock c to each process thread (tid c:s), each process label (tid c:l), and
each memory location (with each m(x) now being a pair vc of a value and vector
clock). In your semantics each vector clock should be computed so as to record
the latest transition number of all threads that have causally affected that point.
Explain your semantics, perhaps with some simple examples. [11 marks]

(c) Suppose that p,m
l−→ l1−→ . . .

ln−→ l′−→ in your vector-clock semantics, where l and l′

conflict but are separated by l1, . . . , ln. To implement a dynamic race detector,
we would like to find conditions on l1, . . . , ln under which there is some other

execution with l and l′ adjacent: p,m
l̂1−→ . . .

l̂n̂−→ l̄−→ l̄′−→ (where l̄ and l̄′ are like l
and l′ but perhaps with different vector clocks). Give such a condition, as liberal
as you can, and explain why it has that property. [8 marks]

2

