4 Computation Theory (AMP)

(a) Give the recursion equations for the function \(\rho^n(f, g) \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) defined by primitive recursion from functions \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) and \(g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N} \). [2 marks]

(b) Define the class PRIM of primitive recursive functions, giving exact definitions for all the functions and operations you use. [5 marks]

(c) Show that the addition function \(\text{add}(x, y) = x + y \) is in PRIM. [2 marks]

(d) Give an example of a function \(\mathbb{N}^2 \rightarrow \mathbb{N} \) that is not in PRIM. [3 marks]

(e) The Fibonacci function \(\text{fib} \in \mathbb{N} \rightarrow \mathbb{N} \) satisfies \(\text{fib}(0) = 0 \), \(\text{fib}(1) = 1 \) and \(\text{fib}(x + 2) = \text{fib}(x) + \text{fib}(x + 1) \) for all \(x \in \mathbb{N} \).

 (i) Assuming the existence of primitive recursive functions \(\text{pair} \in \mathbb{N}^2 \rightarrow \mathbb{N} \), \(\text{fst} \in \mathbb{N} \rightarrow \mathbb{N} \) and \(\text{snd} \in \mathbb{N} \rightarrow \mathbb{N} \) satisfying for all \(x, y \in \mathbb{N} \)
 \[
 \text{fst}(\text{pair}(x, y)) = x \land \text{snd}(\text{pair}(x, y)) = y
 \]
 prove by mathematical induction that any function \(g \in \mathbb{N} \rightarrow \mathbb{N} \) satisfying
 \[
 g(0) = \text{pair}(0, 1)
 \]
 \[
 g(x + 1) = \text{pair}(\text{snd}(g(x)), \text{fst}(g(x)) + \text{snd}(g(x)))
 \]
 for all \(x \in \mathbb{N} \), also satisfies
 \[
 \forall x \in \mathbb{N}(\text{fst}(g(x)) = \text{fib}(x) \land \text{snd}(g(x)) = \text{fib}(x + 1)).
 \] [4 marks]

 (ii) Deduce that the Fibonacci function \(\text{fib} \) is in PRIM. [4 marks]