10 Semantics of Programming Languages (PMS)

Consider the language L below, with call-by-value functions, ML-style references, and types \(\text{nat}_+ \) and \(\text{real}_+ \) of positive natural and positive real numbers. L includes a primitive test for primality, \(\text{prime}(e) \), and a square-root function, \(\text{sqrt}(e) \); these are defined only for positive-natural and positive-real values respectively.

\[
T ::= \text{bool} | \text{nat}_+ | \text{real}_+ | T \rightarrow T' | \text{T ref}
\]
\[
e ::= x | n | r | \text{fn } x : T \Rightarrow e | e | e' | \text{ref } e | ! e | e := e' | \text{prime}(e) | \text{sqrt}(e)
\]

Here \(x \) ranges over a set \(X \) of variables and \(n \) and \(r \) range over \(\mathbb{N}_{>0} \) and \(\mathbb{R}_{>0} \) respectively. Let \(\Gamma \) range over finite partial functions from \(X \) to types \(T \).

(a) Give typing rules defining \(\Gamma \vdash e : T \) for \(\text{prime}(e) \) and \(\text{sqrt}(e) \). [1 mark]

(b) There is an obvious runtime coercion from elements of \(\text{nat}_+ \) to elements of \(\text{real}_+ \). To let programmers exploit that conveniently, we would like to define a type system for L that includes a subtype relation \(T_1 <: T_2 \) with \(\text{nat}_+ <: \text{real}_+ \). The type system should prevent all run-time errors.

(i) Give the other rules defining \(T_1 <: T_2 \) and the subsumption rule to use that relation in \(\Gamma \vdash e : T \). [4 marks]

(ii) Give the 6 (standard) typing rules defining \(\Gamma \vdash e : T \) for functions and references. [3 marks]

(iii) With reference to your subtype rule for function types, explain covariance and contravariance of subtyping. Give examples in L showing that your rule is the only reasonable choice. [2 marks]

(iv) Similarly, justify your rule for reference types. [2 marks]

(c) To implement L, we want to translate it during typechecking to another typed language L’ which makes that coercion explicit where required, as a new expression form \(\text{real}_+ \text{of}_+ \text{nat}(e) \), and which does not have subtyping.

(i) Give the L’ typing rule for \(\text{real}_+ \text{of}_+ \text{nat}(e) \) and indicate any other changes required to your type rules for L. [1 mark]

(ii) Define an inductive relation \(T <: T' \bowtie e \) which for any \(T <: T' \) constructs a coercion \(e : T \rightarrow T' \). [4 marks]

(iii) Define an inductive relation \(\Gamma \vdash e \bowtie e' : T \) where \(e \) is an L expression and \(e' \) is an L’ expression which is like \(e \) but with coercions introduced where needed, such that \(\Gamma \vdash e : T \) iff \(\exists e' \). \(\Gamma \vdash e \bowtie e' : T \). You should explain but need not prove that, and you can omit the rules for references. [3 marks]