5 Databases (TGG)

Suppose that an Entity-Relationship model has been constructed that contains two entities \(S(A, B) \) and \(T(C, \text{Amount}) \), where \(A, B, C \) and \(\text{Amount} \) are attributes and the underline indicates a key. Suppose that we also have a many-to-many relationship \(R \) between \(S \) and \(T \).

We might expect that this model would be implemented in a relational schema such as \(S(A, B), T(C, \text{Amount}) \), and \(R(A, C) \). However, the database implementor has noticed that a very common and expensive query is this: given an \(A \)-value \(a \), find the sum of all \(\text{Amount} \) values for records in \(T \) related to this \(a \) value in \(S \). Therefore, the implementor has decided to “optimise” the database and replace table \(S \) with \(S' \) having schema

\[
S'(A, B, \text{Sum}),
\]

where the records in table \(S' \) will contain the precomputed values for this query. In this way the common and expensive query can be answered by a single key-based read. (Note: \(\text{Sum} \) should be 0 if no matching records exist.)

(a) Explain how the operation \(\text{insert} (a, b) \) into \(S \) can be correctly implemented in the \(\{S', R, T\} \) database. [4 marks]

(b) Explain how the operation \(\text{insert} (c, v) \) into \(T \) can be correctly implemented in the \(\{S', R, T\} \) database. [4 marks]

(c) Explain how the operation \(\text{insert} (a, c) \) into \(R \) can be correctly implemented in the \(\{S', R, T\} \) database. [4 marks]

(d) For an OLTP database, discuss the performance implications of this so-called optimisation. [4 marks]

(e) This example illustrates a fundamental trade-off in the design and implementation of database applications. Discuss. [4 marks]