9 Algorithms (TMS)

(a) Explain the terms amortized analysis, aggregate analysis and potential method. [6 marks]

(b) Consider an arbitrary sequence of n stack operations $\text{PUSH}(), \text{POP}()$ and $\text{MULTIPOP}(x)$ in which $\text{POP}()$ or $\text{MULTIPOP}(x)$ never attempt to remove more elements than there are on the stack. Assuming that the stack begins with s_0 items and finishes with s_n items, determine the worst-case total cost for executing the n operations as a function of n, s_0 and s_n. You may assume $\text{PUSH}()$ and $\text{POP}()$ cost 1 each and $\text{MULTIPOP}(x)$ costs x. [5 marks]

(c) Suppose we want to store a number of items in an array, but we do not know in advance how many items need to be stored. The $\text{INSERT}(x)$ operation appends an item x to the array. More precisely, if the size of the array is large enough, x is inserted directly at the end of the array. Otherwise, a new array of larger size is created that contains all previous items with x being appended at the end. The total cost of $\text{INSERT}(x)$ is 1 in the first case, and the size of the new array in the second case.

(i) Devise a strategy which, for any integer n, performs any sequence of n $\text{INSERT}(.)$ operations at a total cost of $O(n)$. [5 marks]

(ii) For the strategy described in (c)(i), give a proof of the cost of the algorithm using the potential method. [4 marks]