
CST.2014.3.1

COMPUTER SCIENCE TRIPOS Part IB

Monday 2 June 2014 1.30 to 4.30 pm

COMPUTER SCIENCE Paper 3

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags
Rough work pad

SPECIAL REQUIREMENTS
Approved calculator permitted

CST.2014.3.2

1 Algorithms II

(a) In the context of multithreaded algorithms, define work and span, and state the
work law and the span law. [3 marks]

(b) Prove that the performance of a greedy scheduler is optimal to within a factor of
2. (Proving all intermediate theorems is not required if you state them correctly.)

[4 marks]

(c) Version A of a multithreaded algorithm takes 500 seconds on a uniprocessor
machine and 50 seconds on a 32-processor machine. Version B takes the same
time as A on a single processor but only 24 seconds on the 32-processor machine.

(i) Define the parallelism of a computation and compute the parallelism of
algorithms A and B. Which of the two has higher parallelism, and by
how much? (Hint: use one of the greedy scheduler theorems to derive an
approximation for one of the unknowns.) [6 marks]

(ii) Estimate the running times of algorithms A and B on a 4-processor and on
a 1024-processor machine, explaining how you obtain them. [3 marks]

(iii) Sketch possible computation DAGs for algorithms A and B and use them
to discuss the results obtained. As the number of processors in the host
machine varies, is A or B faster? [4 marks]

2

CST.2014.3.3

2 Algorithms II

(a) Consider van Emde Boas (vEB) trees.

(i) On its own page for legibility, draw the smallest vEB tree storing keys 0,
3, 6, 7. The correctness of the structure and the accuracy of all fields of all
nodes are important. Once done, write each of the keys under the cluster
in which it is logically stored. [8 marks]

(ii) vEB trees store the minimum and maximum key of a subtree in the
root node, but do not store the minimum key in any of the descendent
clusters. Explain all the reasons why this provides a performance advantage
compared with proto-vEB trees. [4 marks]

(b) Consider proto-vEB trees.

The following pseudocode attempts to implement a method to delete a key from
a proto-vEB node. Give a clear explanation of the strategy that it uses. Fix
any bugs that it may contain. Give more meaningful identifiers for the variables
c and s. Give appropriate comments for the four positions marked “COMMENT
HERE”. Explain why the method returns a value and what the value means.

[8 marks]

0 boolean delete(self, key)

1 # HEADER COMMENT HERE (1)

2 if self.u == 2:

3 if self.A[key] == 0

4 # COMMENT HERE (2)

5 return False

6 else:

7 c = self.cluster[high(key)].delete(low(key))

8 if c:

9 # COMMENT HERE (3)

10 s = self.summary.delete(high(key))

11 # COMMENT HERE (4)

12 return s

13 else:

14 return False

3 (TURN OVER)

CST.2014.3.4

3 Programming in C and C++

(a) Write a C function revbits() which takes a single 8-bit char parameter and
returns a char result by reversing the order of the bits in the char. [4 marks]

(b) Write a C function revbytes() taking two parameters and returning no result.
The first parameter is a pointer to memory containing n contiguous bytes (each
of type char), and the second is the number of bytes. The function should have
the side effect of reversing the order of the bits in the n contiguous bytes, seen
as a bitstring of length 8n. For example, the first bit of the first char should be
swapped with last bit of the last char. [6 marks]

(c) You have been assigned the following seemingly working C code, which processes
files controlling the behaviour of a system. You observe that, after obtaining
several ERR_MALFORMED errors, subsequent calls to fopen fail due to too many
files being open:

int process_file(char *name)

{ FILE *p = fopen(name, "r");

if (p == NULL) return ERR_NOTFOUND;

while (...)

{ ...

if (...) return ERR_MALFORMED;

process_one_option();

...

}

fclose(p);

return SUCCESS;

}

(i) Explain how to fix the program using facilities in C. [2 marks]

(ii) Now suppose the function above was part of a system written in C++ (but
still using the C file-processing commands such as fopen and fclose), and
that process_one_option() might raise one or more exceptions. Using
a class with a destructor, show how to fix the “too many files open” bug
above. [8 marks]

4

CST.2014.3.5

4 Compiler Construction

This question concerns the run-time call stack.

(a) What is a run-time stack and why is it important to a compiler writer?
[3 marks]

(b) The implementation of a run-time call stack typically uses a stack pointer and
a frame pointer. What are their roles and why do we need two pointers?

[3 marks]

(c) For some compilers the activation records (stack frames) contain static links.
What problem are static links used to solve and how do they solve this problem?

[3 marks]

(d) (i) Consider a programming language that does not allow functions to be
returned as results, but does allow the nesting of function declarations.
Using ML-like syntax, we have the following code in this language.

let fun f(x) =

let

fun h(k) = k * x

fun g(z) = h(x + z + 1)

in

g(x + 1)

end

in

f(17)

end

Draw a diagram illustrating the call stack from the call of f up to and
including the call of function h. Make sure all function arguments are
included in the diagram and clearly indicate static links. [5 marks]

(ii) Using your diagram, explain how the code generated from the body of
function h can access the values associated with the variables k and x. In
each case make it clear what information is known at compile-time and
what information is computed at run-time. [6 marks]

5 (TURN OVER)

CST.2014.3.6

5 Compiler Construction

Functional programmers will often rewrite a recursive function such as

fun fact1 n =

if n <= 1

then 1

else n * (fact1 (n -1))

to one such as

fun fact2 n =

let fun aux (m, a) =

if m <= 1

then a

else aux(m-1, m * a)

in aux (n, 1) end

using an accumulator (the parameter a of aux) and tail recursion.

(a) Clearly explain the optimisation such programmers are expecting from the
compiler and how that optimisation might improve performance. [4 marks]

(b) The desired optimisation can be performed by a compiler either directly on
the source program or on lower-level intermediate representations. Treating
it as a source-to-source transformation, rewrite fact2 to ML code that has
been transformed by this optimisation. You will probably use references and
assignments as well as the construct while EXP do EXP. [8 marks]

(c) Suppose that the programmer used instead a function as an accumulator.

fun fact3 n =

let fun aux (m, h) =

if m <= 1

then h(1)

else aux(m-1, fn r => m * (h r))

in aux (n, fn x => x) end

Will your optimisation still work in this case? Explain your answer in detail.
[8 marks]

6

CST.2014.3.7

6 Concepts in Programming Languages

(a) Write a LISP program for detecting whether a LISP interpreter treats the
language as being dynamically scoped (as was the case in historical LISP) or as
being statically scoped (as is the case in modern LISP). You may use pseudo-code
and should explain your answer in detail. [4 marks]

(b) You manage two junior programmers and overhear the following conversation:

A: “I don’t know why anyone needs a language other than Java, it
provides clean thread-based parallel programming.”
B: “Maybe, but I write my parallel programs in a functional
programming language because they are then embarrassingly parallel.”

Discuss the correctness of these statements and the extent to which they cover
the range of languages for parallel programming. [6 marks]

(c) Explain why the SML interpreter accepts the declarations

datatype 'a FBtree = node of 'a * 'a FBtree list;

fun dfs P (t: 'a FBtree)

= let exception Ok of 'a;

fun auxdfs(node(n,F)) = if P n then raise Ok n

else foldl (fn(t,_) => auxdfs t) NONE F;

in auxdfs t handle Ok n => SOME n end;

while it does not accept the declaration

exception Ok of 'a; [4 marks]

(d) Consider the declarations

structure Z = struct type t = int; val z = 0 end;

structure A = Z : sig type t ; val z: t end;

structure B = Z :> sig type t = int ; val z: t end;

structure C = Z :> sig type t ; val z: t end;

in the SML Modules language.

Explain the behaviour of the SML interpreter on inputting each of the
expressions

Z.z = A.z; Z.z = B.z; Z.z = C.z; [6 marks]

7 (TURN OVER)

CST.2014.3.8

7 Further Java

Five housemates run a “status” server on their home network. The server stores the
current status of each housemate as a string of text. For example, housemate Eva
might set her status to “Gone to the exam hall.”

Messages are passed between clients and the server as text strings sent over TCP.
The new line character is used exclusively as the last character in every message. On
connection with the server, a client can either (i) query the status of a user by sending
the user’s name to the server as a string (and the server responds with the current
status message), or (ii) set the status of a user by sending the user’s name followed
by a colon and the new status message. For example, “Eva:Gone to the exam hall.”
sets the status message for Eva.

(a) Implement a status server in Java. The server should run indefinitely, responding
to client requests. Once a client request has been fulfilled, the server should close
the connection. You may assume current status messages are lost if the server
is restarted and you do not need to handle exceptions. [8 marks]

(b) One housemate suggests the server and client should communicate by serialising
Java objects rather than sending messages as text.

(i) Describe in words the changes you would make to your server implementa-
tion to send messages as serialised Java objects. [3 marks]

(ii) List two advantages and two disadvantages of an implementation based on
serialised Java objects versus sending messages as text. [4 marks]

(c) Another housemate suggests that the server should not close the client’s
connection after answering the request. Instead the connection should remain
open until the client sends another request or closes the connection. Describe
in words what changes you would need to make to your implementation in part
(a) to achieve this and comment on the advantages and disadvantages of this
idea. [5 marks]

8

CST.2014.3.9

8 Prolog

You are asked to write a Prolog program to work with binary trees. Your code
should not rely on any library predicates and you should assume that the interpreter
is running without occurs checking.

3

2 7

4 2 5

(a) Describe a data representation scheme for such trees in Prolog and demonstrate
it by encoding the tree shown above. [3 marks]

(b) Implement a Prolog predicate bfs/2 which effects a breadth-first traversal of a
tree passed as the first argument and unifies the resulting list with its second
argument. For example, when given the tree shown above as the first argument
the predicate should unify the second argument with the list [3,2,7,4,2,5].

[4 marks]

(c) Explain why the bfs/2 predicate might benefit from being converted to use
difference lists. [2 marks]

(d) Implement a new predicate diffbfs/2 which makes use of a difference list to
exploit the benefit you identified in part (c). Your predicate should take the
same arguments as bfs/2. [6 marks]

(e) A friend observes that a clause in diffbfs/2 will need to contain an empty
difference list and proposes two possible ways of representing it, either []-[] or
A-A.

Consider your implementation of diffbfs/2. For each use of an empty difference
list, justify your choice and explain what can go wrong using the alternative form.

[2 marks]

(f) Is your implementation amenable to last call optimisation (LCO)? If so, explain
why. If not, give details of the minimal changes you would make to make LCO
possible. [3 marks]

9 (TURN OVER)

CST.2014.3.10

9 Software Engineering

(a) Describe the main lessons learned from the report into the collapse of the London
Ambulance Service. [12 marks]

(b) To what extent have the developments in software tools and management
practices of the last twenty years improved the situation, and which of the
lessons do we still have to be careful of today? [8 marks]

END OF PAPER

10

