COMPUTER SCIENCE TRIPOS Part II – 2013 – Paper 9

4 Denotational Semantics (MPF)

- (a) (i) State carefully, without proof, the compositionality, soundness, and adequacy results for PCF. [6 marks]
 - (*ii*) Define the notion of contextual equivalence in PCF. [2 marks]

(You need not describe the syntax and the operational and denotational semantics of PCF.)

- (b) Show that for all types τ and closed terms M and M' of type τ , if $[\![M]\!]$ and $[\![M']\!]$ are equal elements of the domain $[\![\tau]\!]$ then M and M' are contextually equivalent. [4 marks]
- (c) Consider the following closed PCF terms of type $nat \rightarrow bool \rightarrow nat$:

$$F_0 = \mathbf{fn} \ x : nat. \ \mathbf{fn} \ y : bool. \ x$$

$$F_1 = \mathbf{fix} \left(\mathbf{fn} \ f : nat \to bool \to nat. \ \mathbf{fn} \ x : nat. \ \mathbf{fn} \ y : bool.$$

$$\mathbf{if} \ \mathbf{zero}(x) \ \mathbf{then} \ \mathbf{0}$$

$$\mathbf{else} \ \mathbf{succ}(\ f \ (\mathbf{pred} \ x) \ y \) \ \right)$$

 $F_2 = \mathbf{fn} \ x : nat. \ \mathbf{fn} \ y : bool. \ \mathbf{if} \ y \ \mathbf{then} \ x \ \mathbf{else} \ x$

State whether or not F_1 and F_2 are contextually equivalent to F_0 . Justify your answers. [4 marks each]