COMPUTER SCIENCE TRIPOS Part II – 2013 – Paper 7

6 Denotational Semantics (MPF)

- (a) Let D be a poset and let $f: D \to D$ be a monotone function.
 - (i) Give the definition of the least pre-fixed point, fix(f), of f. Show that fix(f) is a fixed point of f. [5 marks]
 - (*ii*) Show that whenever D is a domain and f is a continuous function, fix(f) exists. [5 marks]
- (b) A poset (P, \sqsubseteq) has binary meets if for every pair of elements $x, y \in P$ there is a necessarily unique element $(x \sqcap y) \in P$ such that
 - $(x \sqcap y) \sqsubseteq x$ and $(x \sqcap y) \sqsubseteq y$, and
 - for all $z \in P$, $z \sqsubseteq x$ and $z \sqsubseteq y$ imply $z \sqsubseteq (x \sqcap y)$.
 - (i) Let (P, \sqsubseteq) be a poset with binary meets. Show that the function $meet: P \times P \to P$ given by $meet(x, y) = x \sqcap y$ is monotone. [5 marks]
 - (ii) Exhibit a domain with binary meets for which the function meet is not continuous. Justify your answer.[5 marks]