
2

COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 1

Foundations of Computer Science (LCP)

The function perms returns all n! permutations of a given n-element list.

fun cons x y = x::y;

fun perms [] = [[]]

| perms xs =

let fun perms1 ([],ys) = []

| perms1 (x::xs,ys) =

map (cons x) (perms (rev ys @ xs)) @

perms1 (xs,x::ys)

in perms1 (xs,[]) end;

(a) Explain the ideas behind this code, including the function perms1 and the
expression map (cons x). What value is returned by perms [1,2,3]?

[7 marks]

(b) A student modifies perms to use an ML type of lazy lists, where appendq and
mapq are lazy list analogues of @ and map.

fun lperms [] = Cons ([], fn() => Nil)

| lperms xs =

let fun perms1 ([],ys) = Nil

| perms1 (x::xs,ys) =

appendq (mapq (cons x) (lperms (rev ys @ xs)),

perms1 (xs,x::ys))

in perms1 (xs,[]) end;

Unfortunately, lperms computes all n! permutations as soon as it is called.
Describe how lazy lists are implemented in ML and explain why laziness is not
achieved here. [5 marks]

(c) Modify the function lperms, without changing its type, so that it computes
permutations upon demand rather than all at once. [8 marks]

All ML code must be explained clearly and should be free of needless complexity.

1


