The documents in the figure below are to be clustered according to their similarity in standard frequency-based vector space. The proximity metric to be used is the Manhattan distance

\[m(\vec{d}_k, \vec{d}_j) = \sum_i |d_{k,i} - d_{j,i}| \]

where \(\vec{d}_k \) and \(\vec{d}_j \) represent the vectors assigned to documents \(k \) and \(j \), and \(d_{k,i} \) gives the frequency of term \(i \) in document \(k \).

<table>
<thead>
<tr>
<th>Doc 1: whale, sea, sea, whale, boat, boat, boat, boat, boat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doc 2: whales, sea, sea, water</td>
</tr>
<tr>
<td>Doc 3: whale, water, water, whale, whale</td>
</tr>
<tr>
<td>Doc 4: whales, whales, whales</td>
</tr>
</tbody>
</table>

(a) Construct the term–document matrix under the assumption that the terms are not stemmed. [3 marks]

(b) Construct the corresponding document–document matrix. [3 marks]

(c) On the basis of the document–document matrix, perform complete-link clustering, showing the output as well as intermediate results. [6 marks]

(d) Starting from the situation in part (c), you now want to create a clustering which is guaranteed to be different from the one in (c). You are allowed to manipulate one of the following factors:

- the term weighting
- the proximity metric
- whether stemming is applied
- adding new terms to documents
- the similarity function (single-link instead of complete-link)

Which of the factors do you choose, and why? Demonstrate the changes affected. [8 marks]