COMPUTER SCIENCE TRIPOS Part II – 2012 – Paper 7

6 Denotational Semantics (AMP)

- (a) If D and D' are domains, explain what is the function domain $D \to D'$; give its partial order and least element, and explain how least upper bounds of chains are calculated in it. [4 marks]
- (b) An element d of a domain D is said to be *isolated* if for all countable chains $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots$ in D with $d \sqsubseteq \bigsqcup_{n \ge 0} x_n$, there exists $i \ge 0$ with $d \sqsubseteq x_i$. We write K(D) for the subset of isolated elements.

Given domains D and D' and elements $d \in D$ and $d' \in D'$, let $[d, d'] : D \to D'$ be the function mapping each $x \in D$ to d' if $d \sqsubseteq x$ and to \bot otherwise.

- (i) Prove that [d, d'] is monotone.
- (*ii*) Prove that if $f : D \to D'$ is monotone, then $[d, d'] \sqsubseteq f$ if and only if $d' \sqsubseteq f(d)$. [2 marks]

[2 marks]

- (*iii*) Prove that if $d \in K(D)$, then [d, d'] is an element of the function domain $D \to D'$. [3 marks]
- (*iv*) Prove that if both $d \in K(D)$ and $d' \in K(D')$, then [d, d'] is an isolated element of the function domain $D \to D'$. [3 marks]
- (v) Now suppose that every element of D is the least upper bound of some countable chain of isolated elements and the same is true for D'. Show that each element f of the function domain $D \to D'$ is the least upper bound of the subset $F \stackrel{\text{def}}{=} \{[d, d'] \mid d \in K(D) \& d' \in K(D') \& d' \subseteq f(d)\}$. [6 marks]