Denotational Semantics

(a) A PCF type τ is said to be *finite* (resp. *infinite*) if the domain $[\![\tau]\!]$ is finite (resp. infinite). An element d of the domain $[\![\tau]\!]$ is said to be *definable* whenever there exists a closed PCF term $M : \tau$ such that $[\![M]\!] = d$.

Indicate whether the following statements are true or false. Provide an argument for each answer. You may use standard results provided that you state them clearly.

- (i) For all finite PCF types τ , every element of the domain $[\![\tau]\!]$ is definable. [5 marks]
- (*ii*) For all infinite PCF types τ , every element of the domain $\llbracket \tau \rrbracket$ is definable. [5 marks]
- (b) Consider the following two statements for PCF terms M_1 and M_2 for which the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold for some type environment Γ and type τ .
 - (1) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}[M_1]$: bool and $\mathcal{C}[M_2]$: bool,

$$\mathcal{C}[M_1] \Downarrow_{bool} \iff \mathcal{C}[M_2] \Downarrow_{bool}$$

where, for $M : \tau$, the notation $M \Downarrow_{\tau}$ stands for the existence of a value $V : \tau$ for which $M \Downarrow_{\tau} V$.

(2) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}[M_1]$: bool and $\mathcal{C}[M_2]$: bool,

 $\mathcal{C}[M_1] \Downarrow_{bool} \mathbf{true} \iff \mathcal{C}[M_2] \Downarrow_{bool} \mathbf{true}$

[5 marks]

- (i) Show that (1) implies (2).
- (*ii*) Define the notion of contextual equivalence in PCF and show that (2) implies that M_1 and M_2 are contextually equivalent. [5 marks]