Hoare Logic

The programming language L consists of commands C composed from assignments $V := E$ (where E is an expression) using sequences $C_1; C_2$, conditionals $\text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2$ (where S is statement) and while-loops $\text{WHILE } S \text{ DO } C$.

(a) Devise a command SKIP in L that has no effect and, for arbitrary P, prove using the Hoare logic axioms and rules for the constructs of L that $\vdash \{P\} \text{SKIP} \{P\}$. [4 marks]

(b) Devise a one-armed conditional $\text{IF } S \text{ THEN } C$ built only from S, C and constructs of L and show using the Hoare logic for L that if $\vdash \{P \land S\} C \{Q\}$ and $\vdash P \land \neg S \Rightarrow Q$ then $\vdash \{P\} \text{IF } S \text{ THEN } C \{Q\}$. [6 marks]

(c) Define a command MAGIC in L that has the property $\vdash \{P\} \text{MAGIC} \{Q\}$ for any precondition P and postcondition Q. Prove that your definition of MAGIC has this property using the Hoare logic for L. [10 marks]