Denotational Semantics

(a) Let Ω be the domain

$$0 \sqsubseteq 1 \sqsubseteq \dots \sqsubseteq n \sqsubseteq \dots \sqsubseteq \omega \qquad (n \in \mathbb{N})$$

(That is, $\Omega = (\mathbb{N} \cup \{\omega\}, \sqsubseteq)$ with $x \sqsubseteq y$ in Ω iff $x \le y$ in \mathbb{N} or $y = \omega$.)

Indicate whether the following statements are true or false. Provide an argument for each answer.

- (i) Every monotone function from Ω to Ω is continuous. [5 marks]
- (*ii*) Every monotone function from Ω to Ω has a least pre-fixed point.

[5 marks]

- (b) Let D and E be domains, and let $f: D \to D$ and $g: E \to E$ be continuous functions.
 - (i) Define $f \times g : D \times E \to D \times E$ to be the continuous function given by $(f \times g)(d, e) = (f(d), g(e))$, and let $\pi_1 : D \times E \to D$ and $\pi_2 : D \times E \to E$ respectively denote the first and second projection functions.

Show that $fix(f \times g) \sqsubseteq (fix(f), fix(g))$, and that $fix(f) \sqsubseteq \pi_1(fix(f \times g))$ and $fix(g) \sqsubseteq \pi_2(fix(f \times g))$. [5 marks]

(*ii*) It follows from part (*i*) that $fix(f \times g) = (fix(f), fix(g))$. Use this and Scott's Fixed Point Induction Principle to show that, for all strict continuous functions $h: D \to E$,

$$h \circ f = g \circ h \implies h(fix(f)) = fix(g)$$
 [5 marks]