2011 Paper 7 Question 13

Optimising Compilers

(a) Define what is meant by a variable being live at a program point, carefully

distinguishing versions based on program structure and I/O behaviour.
Discuss these alternatives and their suitability for compilation using words
like “decidable” and “safety”. [4 marks]

Explain the difference between dead code and unreachable code, mentioning
any analysis necessary to remove such code. [3 marks]

Let ¢ be an expression (whose only free variable is a) which always evaluates to
true although deducing this is beyond the power of a given compiler optimiser.

Consider the function

int p(int a, int b, int c, int d, int e)
{ int x = a+b, y = a+c, z=0, r;
if (a<5) { r = a+x; while (1) continue; z = a+d; }
else if (¢) { r=1y; }
else { r = ate; }
return r+z;

(i) Give the flowgraph for p (assuming it to have been translated as naively
as possible). [3 marks]

(ii) Using your definition of liveness suitable for a compiler from part (a),
give the set of variables live on entry to p, comparing this with liveness
required by I/O behaviour. [4 marks]

(ii7) Expressing your answer in source code similar to the definition of p,
give the code you might expect a good optimiser to achieve. State the
optimisations used, where and in what order they were applied, and
the set of variables live (under both forms of liveness) on entry to the
optimised version of p. [6 marks]



