2011 Paper 7 Question 11

Principles of Communications

(a) Consider a Graph G, with bi-directional equal weight edges, defined by:

$$
\begin{aligned}
G & =V, E \\
V & =1,2,3,4,5,6,7 \\
E & =(2,1),(2,3),(2,4)(3,4)(5,2),(6,2),(7,1),(7,5),(7,6)
\end{aligned}
$$

(i) Draw the graph.
(ii) Define a spanning tree of G using an incidence matrix.
(iii) Explain the Distance Vector (D-V) routing algorithm, illustrating it operating in terms of messages sent and received by node 7 in G. Show what happens in terms of $\mathrm{D}-\mathrm{V}$ messages exchanged by node 7 , if the edge $(1,7)$ breaks, and then later, when edge $(1,7)$ is repaired. [10 marks]
(b) Suppose that your college has 1000 members; and that Cambridge has a population of 100,000 ; and that the Earth's total population is ten thousand million. Assuming that each of these social networks is a random graph with $p=0.01$, then for each network, what is the average degree and average path length?

