
2010 Paper 9 Question 10

Optimising Compilers

A CPU has the following two features:

1. Every arithmetic instruction (as well as the special “compare” instruction)
sets condition codes based on the value of the result, and subsequent
conditional instructions can test these.

2. If you execute an instruction that attempts to load from or store to a
memory address that is not a multiple of the word-size, the CPU generates
an interrupt.

You are concerned with decompilation from the target instructions of this machine
back into a high-level programming language.

(a) (i) What issues are raised by the condition codes, and what effect would they
have on a näıve decompilation? [5 marks]

(ii) What optimisation techniques could you use to improve matters, and
what (if any) are the limitations of your approach? [5 marks]

(b) Direct decompilation would need to prefix every memory access with a test to
see whether the address being used was properly aligned. This would lead to
bulky code that was hard to read and had poor performance. It is expected
that, in the program that is being decompiled, unaligned memory accesses are
very rare. You are expected to decompile into portable code in the high-level
language that may not rely on any treatment of unaligned addresses on the
fresh computer you compile for. Again, what optimisation techniques could
you apply? [10 marks]

1


