2010 Paper 8 Question 1

Advanced Graphics

(a) Discrete curvature
(i) Give each of the following: the Gaussian curvature at the exact centre of any face of a cube; the Gaussian curvature at any corner of a cube; and the angle deficit at any corner of a cube.
[1 mark]
(ii) Sketch a picture of a closed manifold surface with total angle deficit -4π. The picture must be intelligible but you will not otherwise be marked on artistic skill.
[2 marks]
(iii) If your hypothetical surface had 20 vertices and 20 faces then how many edges must it have?
(b) The convex hull
(i) In no more than ten sentences and/or half a page of pseudocode, describe a method for finding the convex hull of a set of n points in 3D. For full marks, give an algorithm that runs in $O\left(n^{2}\right)$ time or faster; partial marks will be given to any slower solution. You must give enough detail that a programmer with no knowledge of computational geometry could implement your algorithm.
(ii) Give the running time of your algorithm in big- O notation. [1 mark]
(c) Global illumination
(i) In no more than six sentences, describe either radiosity rendering or photon mapping.
(ii) In no more than six sentences, compare your chosen method with the other one.
(iii) Which of these two is an example of a Monte Carlo algorithm? [1 mark]
(d) Ray tracing

A perfectly reflective mirrored sphere, S, is centred at the origin $(0,0,0)$. Directly above it is a bright red $2 \times 2 \times 2$ cube, C, centred at $(0,5,0)$. The default background colour of the scene is blue. A ray-tracing ray R is fired from $(0,1,10)$ with direction $(0,0,-1)$. The scene is lit by an ambient light source and there are no other objects in the scene. What is the maximum radius of S such that the colour calculated for R is red? Full marks for the correct answer; partial marks if you answer incorrectly but your work justifies your response.

