Advanced Graphics

(a) For the knot vector $[0,0,0,1,1,1]$:
(i) Derive all of the B-spline basis functions for the quadratic case $(k=3)$.
(ii) Place three control points, P_{1}, \ldots, P_{3} in an equilateral triangle. Draw the B-spline curve, $P(t)$, defined by the control points and the basis functions derived from the knot vector.
(iii) Identify and label appropriately the locations on the curve in part (a)(ii) at which the parameter, t, is an integer.
(iv) Identify and express as a function of the control point locations the points at which the curve in part $(a)(i i)$ touches the triangle defined by the control points, P_{1}, \ldots, P_{3}.
(b) For the uniform knot vector $[0,1,2,3,4,5,6]$:
(i) Sketch all of the quadratic $(k=3) \mathrm{B}$-spline basis functions.
(ii) Place four control points, Q_{1}, \ldots, Q_{4} in a square. Draw the B-spline curve, $Q(t)$, defined by the control points and the basis functions derived from the knot vector.
(iii) Identify and label appropriately the locations on the curve in part (b)(ii) at which the parameter, t, is an integer.
(iv) Identify and express as a function of the control point locations the points at which the curve in part $(b)(i i)$ touches the square defined by the control points, Q_{1}, \ldots, Q_{4}.
(v) Give the continuity of the curve at $t=3$.
(c) Describe the corner-cutting curve subdivision algorithm (Chaikin algorithm) that, in the limit, produces the same curve as the uniform quadratic B-spline.

