
2010 Paper 7 Question 12

Optimising Compilers

A new programming language follows an “evaluate only on need” strategy. The
consequence is, for example, that in a program fragment

int x = SomeExpression;

if (SomeBoolean) print x;

if (x == 0) x = SomeOtherExpression;

the given (potentially complicated) expression is not evaluated on the line that
declares x, but only gets evaluated if and when x is used, as in the print statement
on line 2. On line 3 the value of x is certainly needed, so if the expression had not
been evaluated earlier it must be there.

Optimising compilation normally improves performance of compiled code based on
transformations that are “safe” in some sense. Propose forms of analysis and hence
optimisation relevant in this case in the circumstances:

(a) It is safe but undesirable to evaluate an expression even if its value will not
subsequently be used, but it must not be evaluated a second time. [8 marks]

(b) It is safe to evaluate an expression repeatedly if is evaluated at all, but if the
program would not use the value it must not be computed at all. [7 marks]

(c) Extra executable logic has to be put in the program to ensure that each
expression is evaluated exactly once if its value is needed, but not at all
otherwise. It is desirable to minimise the amount of this extra logic, preserving
semantics exactly. [5 marks]

You need only consider the case of optimisation of a single procedure at a time.

1


