2010 Paper 6 Question 4

Computation Theory

- (a) Define Church's representation of numbers n as λ -terms \underline{n} . [3 marks]
- (b) What does it mean for a partial function $f \in \mathbb{N}^n \to \mathbb{N}$ to be λ -definable? What is the relationship between λ -definability and computability? [3 marks]
- (c) Show that $\operatorname{succ}(x_1) = x_1 + 1$ is λ -definable. [4 marks]
- (d) Ackermann's function $ack \in \mathbb{N}^2 \to \mathbb{N}$ is a total function of two arguments satisfying

$$ack(0, x_2) = x_2 + 1$$

$$ack(x_1 + 1, 0) = ack(x_1, 1)$$

$$ack(x_1 + 1, x_2 + 1) = ack(x_1, ack(x_1 + 1, x_2)).$$

By considering $\lambda x. x T S$ where $T = \lambda f y. y f(f \underline{1})$ and S is chosen suitably, prove that Ackermann's function is λ -definable. [10 marks]