Computation Theory

- (a) Define the notion of a *register machine* and the computation it carries out. [5 marks]
- (b) What does it mean for a partial function $f(x_1, \ldots, x_n)$ of *n* arguments to be register machine computable? [3 marks]
- (c) Why do there exist partial functions that are not register machine computable? (Any standard results you use in your answer should be carefully stated.)
 [3 marks]
- (d) Consider the following register machine program.

$$\begin{array}{l} L_{0}:R_{1}^{-} \rightarrow L_{1}, L_{6} \\ L_{1}:R_{2}^{-} \rightarrow L_{2}, L_{4} \\ L_{2}:R_{0}^{+} \rightarrow L_{3} \\ L_{3}:R_{3}^{+} \rightarrow L_{1} \\ L_{4}:R_{3}^{-} \rightarrow L_{5}, L_{0} \\ L_{5}:R_{2}^{+} \rightarrow L_{4} \\ L_{6}: \text{HALT} \end{array}$$

Assuming the contents of registers R_0 and R_3 are initially zero, what function of the initial contents of registers R_1 and R_2 does this program compute in register R_0 upon halting? (You may find it helpful to consider the graphical representation of the program.) [4 marks]

(e) Let $f(x_1, x_2)$ be the partial function that is equal to $x_1 - x_2$ if $x_1 \ge x_2$ and is undefined otherwise. Give a register machine program that computes f. [5 marks]