Semantics of Programming Languages

Below is the syntax and operational semantics for a pure functional language.

Types: $T ::= bool \mid T \rightarrow T$

Variables: $\{x, y, z, \ldots\}$

Expressions: $e ::= \text{true} \mid \text{false} \mid \text{if } e \text{ then } e_1 \text{ else } e_2 \mid \text{fn}(x:T) \Rightarrow e \mid e \mid e'$.

In the expression $fn(x:T) \Rightarrow e$, the variable x is binding in e.

- (if1) (if true then e_1 else e_2) $\longrightarrow e_1$
- (if2) (if false then e_1 else e_2) $\longrightarrow e_2$
- (if3) $\frac{e \longrightarrow e'}{(\text{if } e \text{ then } e_1 \text{ else } e_2) \longrightarrow (\text{if } e' \text{ then } e_1 \text{ else } e_2)}$
- (app) $\frac{e_1 \longrightarrow e'_1}{e_1 e_2 \longrightarrow e'_1 e_2}$
 - (fn) $(\operatorname{fn}(x:T) \Rightarrow e) e' \longrightarrow \{e'/x\}e$

(There is no need for a store because there are no store access operations.)

- (a) Is this a call-by-value or a call-by-name language? Revise the operational semantics to demonstrate the other calling convention. [4 marks]
- (b) A type environment is a finite partial function Γ from variables to types. Define a typing relation $\Gamma \vdash e : T$ by giving a set of rules. [6 marks]
- (c) Are the following expressions typable?

$$e_1 = \mathsf{fn}(f : (\mathsf{bool} \to \mathsf{bool}) \to \mathsf{bool}) \Rightarrow \big(\mathsf{fn}(f : \mathsf{bool} \to \mathsf{bool}) \Rightarrow f \, f\big)$$

$$e_2 = \mathsf{fn}(f : \mathsf{bool} \to (\mathsf{bool} \to \mathsf{bool})) \Rightarrow \big(\mathsf{fn}(x : \mathsf{bool}) \Rightarrow (f \, x) \, x\big)$$

[2 marks]

- (d) State formally the following two theorems of the one-step reduction semantics at the top of the page and the type system that you defined in part (b): Progress and Type Preservation. Take care to explain what a value is. (No proofs are required for this part.)
- (e) State and prove the Type Safety theorem. You may use the results stated in part (d). [5 marks]

1