2010 Paper 6 Question 10

Semantics of Programming Languages

Below is the syntax and operational semantics for a pure functional language.

Types: T ==bool | T —T
Variables: {z,y,2,...}

Ezxpressions: e ::= true | false | if e then ey else es | fn(z: T) = e | e€'.

In the expression fn(z : T') = e, the variable z is binding in e.

(ifl) (if true then ey else e2) — e
(if2) (if false then e; else e3) — €9
e — ¢
(if e then ey else e5) — (if €’ then e; else e3)
er — €
e1ea —> €} e

(if3)

(app)

(fn) (fn(z:T)=e)e — {'/x}e

(There is no need for a store because there are no store access operations.)

(a)

Is this a call-by-value or a call-by-name language? Revise the operational
semantics to demonstrate the other calling convention. [4 marks]

A type environment is a finite partial function I' from variables to types. Define
a typing relation I' F e : T' by giving a set of rules. [6 marks|

Are the following expressions typable?

er = fn(f: (bool — bool) — bool) = (fn(f : bool — bool) = f f)
es = fn(f : bool = (bool — bool)) = (fn(z : bool) = (f z) z)

[2 marks]

State formally the following two theorems of the one-step reduction semantics
at the top of the page and the type system that you defined in part (b):
Progress and Type Preservation. Take care to explain what a value is. (No
proofs are required for this part.) [3 marks]

State and prove the Type Safety theorem. You may use the results stated in
part (d). [5 marks]

