Computer Graphics and Image Processing

(a) Homogeneous coordinates are often used to represent transformations in 3D:

$$
\left[\begin{array}{c}
x_{H}^{\prime} \\
y_{H}^{\prime} \\
z_{H}^{\prime} \\
w_{H}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3} \\
c_{1} & c_{2} & c_{3} & d
\end{array}\right]\left[\begin{array}{c}
x_{H} \\
y_{H} \\
z_{H} \\
w_{H}
\end{array}\right]
$$

(i) Explain how to convert standard 3D coordinates, (x, y, z), to homogeneous coordinates, and how to convert homogeneous coordinates to standard 3D coordinates.
(ii) Describe the types of transformations provided by each of the four blocks of coefficients in the matrix $\left(a_{11} \ldots a_{33}, \quad b_{1} \ldots b_{3}, \quad c_{1} \ldots c_{3}\right.$ and $\left.d\right)$.
[5 marks]
(iii) Explain what transformation is produced by each of the following matrices:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 0 & p & -p(1+r) \\
0 & 1 & q & -q(1+r) \\
0 & 0 & 1+r & -r(1+r) \\
0 & 0 & 1 & -r
\end{array}\right]
$$

(b) Consider the following figure:

(i) Give a matrix, or product of matrices, that will transform the square $A B C D$ into the rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
(ii) Show what happens if the same transformation is applied to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

