2010 Paper 2 Question 9

Regular Languages and Finite Automata

(a) Let M be a finite automaton and let M^{\prime} be obtained from M by interchanging the collections of accepting and non-accepting states.
(i) What does it mean for M to be deterministic?
(ii) If M is deterministic, explain why the language accepted by M^{\prime} is the complement of the language accepted by M.
(iii) Give an example, with justification, to show that the property in part (ii) can fail to hold if M is non-deterministic.
(b) Draw pictures of non-deterministic finite automata with ε-transitions over input alphabet $\{a, b\}$ whose languages of accepted strings are
(i) $\{a, a a, a a a\}$
(ii) all strings not in $\{a, a a, a a a\}$
(iii) all strings whose length is divisible by 3 or 5
(iv) all strings matching the regular expression $(a a \mid b)^{*}(b b \mid a)^{*}$
(v) all strings not matching the regular expression $\left(\emptyset^{*}\right)^{*}$

