2010 Paper 2 Question 8

Probability

(a) A coin that comes up "heads" with probability p is tossed n times independently.
(i) What is the likelihood that k of these n tosses will be "heads", and the remainder "tails"?
(ii) Give the mean and the variance expected for the number of "heads" outcomes.
[1 mark each]
(b) In a different experiment with this same coin, you monitor how many tosses are needed before getting the first outcome of a "head".
(i) What is the likelihood that the first "head" occurs on the $k^{t h}$ trial?
(ii) What is the mean trial number k for the first "head", and what is the variance for this number?
[1 mark each]
(c) In a Poisson process with hazard parameter λ :
(i) What is the likelihood of observing k events?
(ii) What is the mean, and what is the variance, expected for the number of observed events?
(d) If X and Y are random variables having expectations $E(X)$ and $E(Y)$ respectively:
(i) What is their covariance $\operatorname{Cov}(X, Y)$?
(ii) In terms of their covariance $\operatorname{Cov}(X, Y)$, and their respective variances $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$, what is their correlation coefficient $\rho(X, Y)$?
[2 marks]
(e) For a continuous random variable X that is exponentially distributed, having density function $f(x)=\lambda \exp (-\lambda x)$ for $x>0$ and $f(x)=0$ for $x \leq 0$:
(i) Derive the expectation $E(X)$ of this random variable.
(ii) Derive its variance $\operatorname{Var}(X)$.

