2010 Paper 2 Question 6

Discrete Mathematics II

A preorder (E, \leq) consists of a set E on which there is a binary relation \leq which is reflexive and transitive.

(a) A subset $x \subseteq E$ is down-closed iff

 $\forall e, e' \in E. \ e \in x \ \& \ e' \lesssim e \ \Rightarrow \ e' \in x$

Write $\mathcal{D}(E)$ for the set of all down-closed subsets of E.

Show that

(i) $\emptyset \in \mathcal{D}(E)$, and [1 mark]

(*ii*) if
$$X \subseteq \mathcal{D}(E)$$
 then $\bigcup X \in \mathcal{D}(E)$. [3 marks]

 $[\text{Recall} \bigcup X =_{\text{def}} \{e \in E \,|\, \exists x \in X. \, e \in x\}.]$

(b) An element $p \in \mathcal{D}(E)$ is said to be a *complete prime* iff

$$\forall X \subseteq \mathcal{D}(E). \ p \subseteq \bigcup X \ \Rightarrow \ \exists x \in X. \ p \subseteq x$$

For $e \in E$, define [e] to be the down-closed set $\{e' \in E \mid e' \leq e\}$.

- (i) Is \emptyset a complete prime? Justify your answer. [3 marks]
- (*ii*) Show for all $x \in \mathcal{D}(E)$ that

$$x = \bigcup\{[e] \mid e \in x\}$$

[3 marks]

(c) For $x \in \mathcal{D}(E)$, show that x is a complete prime iff x = [e] for some $e \in E$. [Remember to show both directions of the "iff".] [6 marks]

(d) For $x \in \mathcal{D}(E)$, define

$$N(x) = \bigcup \{ w \in \mathcal{D}(E) \, | \, w \cap x = \emptyset \}$$

Show, for $e \in E$, that

$$e \in N(x)$$
 iff $\forall e' \leq e. \ e' \notin x$

[4 marks]