2010 Paper 2 Question 5

Discrete Mathematics II

The set Ω is characterised as the least set such that

if X is finite and $X \subseteq \Omega$, then $X \cup \bigcup X \in \Omega$

 $[\text{Recall } \bigcup X =_{\text{def}} \{y \,|\, \exists x \in X. \, y \in x\}.]$

(a) Show

- (i) $\emptyset \in \Omega$, and [2 marks]
- (*ii*) if $x \in \Omega$ then $\{x\} \cup x \in \Omega$. [3 marks]
- (b) State the rule(s) and the principle of rule induction appropriate for the set Ω . [3 marks]
- (c) Define a set x to be *transitive* iff

$$\forall z, y. \ z \in y \ \& \ y \in x \Rightarrow z \in x$$

Prove that all elements of Ω are transitive. [8 marks]

(d) Describe, without proof, the elements of the set Ω . [4 marks]