2009 Paper 7 Question 8

Denotational Semantics

(a) Let D be a poset and let $f: D \rightarrow D$ be a monotone function. definition of the least pre-fixed point, fix (f), of f.

Give the [3 marks]
(b) Let D, E be domains and let $p: D \rightarrow E$ and $q: E \rightarrow D$ be continuous functions.
(i) Prove that $f i x(q \circ p) \sqsubseteq q(f i x(p \circ q))$.
(ii) Thereby also prove that $p(f i x(q \circ p)) \sqsubseteq f i x(p \circ q)$.

Hence,
$(\star) \quad f i x(q \circ p)=q(f i x(p \circ q)) \quad$ and $\quad p(f i x(q \circ p))=f i x(p \circ q)$.
(c) Let D, E be domains and let $f:(D \times E) \rightarrow D$ be a continuous function. Define $f^{\dagger}: E \rightarrow D$ to be the function $f^{\dagger} \stackrel{\text { def }}{=} \lambda e \in E . f i x(\lambda d \in D . f(d, e))$. Show that f^{\dagger} is continuous.

Analogously, for a continuous function $g:(D \times E) \rightarrow E$, let $g^{\ddagger}: D \rightarrow E$ be the function $g^{\ddagger} \stackrel{\text { def }}{=} \lambda d \in D . f i x(\lambda e \in E . g(d, e))$. Then g^{\ddagger} is continuous.
(d) Let D, E be domains and let $f:(D \times E) \rightarrow D$ and $g:(D \times E) \rightarrow E$ be continuous functions. Define $h:(D \times E) \rightarrow(D \times E)$ to be the continuous function $h \stackrel{\text { def }}{=} \lambda(d, e) \in D \times E .(f(d, e), g(d, e))$.
(i) Prove that $f i x(h) \sqsubseteq\left(f i x\left(f^{\dagger} \circ g^{\ddagger}\right), f i x\left(g^{\ddagger} \circ f^{\dagger}\right)\right)$.
[Hint: Recall (\star) above and the pre-fixed point property of $f^{\dagger}(e)$ and of $g^{\ddagger}(d)$, for $e=f i x\left(g^{\ddagger} \circ f^{\dagger}\right)$ and $d=f i x\left(f^{\dagger} \circ g^{\ddagger}\right)$.]
(ii) Let $f i x(h)=(x, y)$.

Prove that $f i x\left(f^{\dagger} \circ g^{\ddagger}\right) \sqsubseteq x$ and $f i x\left(g^{\ddagger} \circ f^{\dagger}\right) \sqsubseteq y$.
[Hint: Recall the pre-fixed point property of $(x, y)=f i x(h)$ and the least pre-fixed point property of $f^{\dagger}(y)$ and of $g^{\ddagger}(x)$.]

Hence, $f i x(h)=\left(f i x\left(f^{\dagger} \circ g^{\ddagger}\right), f i x\left(g^{\ddagger} \circ f^{\dagger}\right)\right)$.

