2009 Paper 7 Question 8

Denotational Semantics

- (a) Let D be a poset and let $f: D \to D$ be a monotone function. Give the definition of the *least pre-fixed point*, fix(f), of f. [3 marks]
- (b) Let D, E be domains and let $p: D \to E$ and $q: E \to D$ be continuous functions.
 - (i) Prove that $fix(q \circ p) \sqsubseteq q(fix(p \circ q))$. [4 marks]
 - (*ii*) Thereby also prove that $p(fix(q \circ p)) \sqsubseteq fix(p \circ q)$. [4 marks]

Hence,

$$(\star) \qquad \qquad fix(q \circ p) = q(fix(p \circ q)) \quad \text{and} \quad p(fix(q \circ p)) = fix(p \circ q)$$

(c) Let D, E be domains and let $f : (D \times E) \to D$ be a continuous function. Define $f^{\dagger} : E \to D$ to be the function $f^{\dagger} \stackrel{\text{def}}{=} \lambda e \in E$. $fix(\lambda d \in D, f(d, e))$. Show that f^{\dagger} is continuous. [5 marks]

Analogously, for a continuous function $g: (D \times E) \to E$, let $g^{\ddagger}: D \to E$ be the function $g^{\ddagger} \stackrel{\text{def}}{=} \lambda d \in D$. $fix(\lambda e \in E, g(d, e))$. Then g^{\ddagger} is continuous.

- (d) Let D, E be domains and let $f : (D \times E) \to D$ and $g : (D \times E) \to E$ be continuous functions. Define $h : (D \times E) \to (D \times E)$ to be the continuous function $h \stackrel{\text{def}}{=} \lambda(d, e) \in D \times E$. (f(d, e), g(d, e)).
 - (i) Prove that $fix(h) \sqsubseteq (fix(f^{\dagger} \circ g^{\ddagger}), fix(g^{\ddagger} \circ f^{\dagger})).$ [2 marks]

[Hint: Recall (*) above and the pre-fixed point property of $f^{\dagger}(e)$ and of $g^{\ddagger}(d)$, for $e = fix(g^{\ddagger} \circ f^{\dagger})$ and $d = fix(f^{\dagger} \circ g^{\ddagger})$.]

(*ii*) Let fix(h) = (x, y).

Prove that $fix(f^{\dagger} \circ g^{\ddagger}) \sqsubseteq x$ and $fix(g^{\ddagger} \circ f^{\dagger}) \sqsubseteq y$. [2 marks]

[Hint: Recall the pre-fixed point property of (x, y) = fix(h) and the least pre-fixed point property of $f^{\dagger}(y)$ and of $g^{\ddagger}(x)$.]

Hence, $fix(h) = (fix(f^{\dagger} \circ g^{\ddagger}), fix(g^{\ddagger} \circ f^{\dagger})).$