Semantics of Programming Languages

Consider the variant of untyped L1 with syntax as below and a standard small-step semantics $\langle e, s \rangle \longrightarrow \langle e', s' \rangle$ (this is identical to L1 except that it has equality testing $e_1 = e_2$ on integers instead of \geq and that here stores are total functions).

Booleans $b \in \mathbb{B} = \{ \mathsf{true}, \mathsf{false} \}$ Integers $n \in \mathbb{Z} = \{ ..., -1, 0, 1, ... \}$ Locations $\ell \in \mathbb{L} = \{ l, l_0, l_1, l_2, ... \}$ Stores s, total functions from \mathbb{L} to \mathbb{Z} Values $v ::= \mathsf{skip} \mid n \mid b$ Operations op ::= = | +Expressions

Define $\llbracket e \rrbracket$ to be the function that takes any store s and either is \bot (undefined), if $\langle e, s \rangle \longrightarrow^{\omega}$, or is $\langle v, s' \rangle$, if $\langle e, s \rangle \longrightarrow^* \langle v, s' \rangle$.

Define (untyped) semantic equivalence $e_1 \simeq e_2$ iff $\llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket$.

- (a) State what it means for \simeq to be a congruence. [2 marks]
- (b) For each of the constructs of the expression grammar, define an explicit characterisation of $\llbracket e \rrbracket$ in terms only of the semantics $\llbracket e' \rrbracket$ of its subexpressions e', without using the reduction relation. (For example, for n (which has no subexpressions) $\llbracket n \rrbracket = \lambda s. \langle n, s \rangle$.) [12 marks]
- (c) Consider (if !l = 1 then e else $e \simeq e$. Either prove it, using your answer to part (b), or exhibit a counterexample. [3 marks]
- (d) Consider (while e_1 do e_2) \simeq (while e_1 do $(e_2; e_2)$) where e_1 does not read any store locations. State whether this is true or false, with an informal explanation of the possible cases. [3 marks]