
2009 Paper 6 Question 10

Semantics of Programming Languages

Consider the variant of untyped L1 with syntax as below and a standard small-step
semantics 〈e, s〉 −→ 〈e ′, s ′〉 (this is identical to L1 except that it has equality testing
e1 = e2 on integers instead of ≥ and that here stores are total functions).

Booleans b ∈ B = {truetruetrue, falsefalsefalse}
Integers n ∈ Z = {...,−1, 0, 1, ...}
Locations ` ∈ L = {l , l0, l1, l2, ...}
Stores s, total functions from L to Z
Values v ::= skipskipskip | n | b
Operations op ::= = | +
Expressions

e ::= skipskipskip | n | b | e1 op e2 | ififif e1 thenthenthen e2 elseelseelse e3 | ` := e | !` | e1; e2 |
whilewhilewhile e1 dododo e2

Define [[e]] to be the function that takes any store s and either is ⊥ (undefined), if
〈e, s〉 −→ω, or is 〈v , s ′〉, if 〈e, s〉 −→∗ 〈v , s ′〉.

Define (untyped) semantic equivalence e1 ' e2 iff [[e1]] = [[e2]].

(a) State what it means for ' to be a congruence. [2 marks]

(b) For each of the constructs of the expression grammar, define an explicit
characterisation of [[e]] in terms only of the semantics [[e ′]] of its subexpressions
e ′, without using the reduction relation. (For example, for n (which has no
subexpressions) [[n]] = λs.〈n, s〉.) [12 marks]

(c) Consider (ififif !l = 1 thenthenthen e elseelseelse e) ' e. Either prove it, using your answer
to part (b), or exhibit a counterexample. [3 marks]

(d) Consider (whilewhilewhile e1 dododo e2) ' (whilewhilewhile e1 dododo (e2; e2)) where e1 does not
read any store locations. State whether this is true or false, with an informal
explanation of the possible cases. [3 marks]

1

