Floating-Point Computation

(a) Briefly describe the 32-bit IEEE floating-point format, explaining what values (or other mathematical objects) are represented by bit-patterns in this format (you need not give the values corresponding to denormalised numbers).

[4 marks]

(b) What value, if any, does the following Java method return, assuming x and old are held as 32-bit IEEE values?

```java
float c() { float old=0, x=1;
    while (old != x) { old = x; x = x+1; }
    return x; }
```

Explain your reasoning.

[3 marks]

(c) Consider the function computed by the Java method

```java
float f(float x) { return x+1; }
```

Discuss how the use of 32-bit IEEE floating-point arithmetic causes it to differ from the mathematical function $f(x) = x + 1$.

[4 marks]

(d) Given a problem of the form “find x such that $f(x) = y$”, explain informally what it means for it to be ill-conditioned.

[2 marks]

(e) The Newton–Raphson iteration for \sqrt{a} uses $x_{n+1} = (x_n + a/x_n)/2$.

Let $x_n = \sqrt{a} + \epsilon_n$, where the error ϵ_n is assumed to be small.

(i) Calculate how the error declines from one iteration to the next.

[3 marks]

(ii) Given $1 \leq a < 4$ and $x_0 = 1.5$, how many iterations are necessary to achieve approximate 32-bit IEEE accuracy, and 64-bit IEEE accuracy?

[2 marks]

(iii) Summarise a possible implementation of square-root on the whole 32-bit IEEE input range rather than just on $[1, 4)$.

[2 marks]