Denotational Semantics

(a) Describe the properties a function between two cpos must have to be continuous.
[2 marks]
(b) Let D_{1}, D_{2} and E be cpos. Prove that a function $h: D_{1} \times D_{2} \rightarrow E$ is continuous if it is continuous in each argument separately. [You may assume standard properties of least upper bounds provided you state them clearly.]
[4 marks]
(c) Let \mathbb{O} be the cpo with two elements $\perp \sqsubseteq \top$. For a cpo E and $e \in E$, define the function $g_{e}: E \rightarrow \mathbb{O}$ by

$$
g_{e}(x)= \begin{cases}\perp & \text { if } x \sqsubseteq e \\ \top & \text { if } x \nsubseteq e\end{cases}
$$

Show g_{e} is continuous.
(d) As an example of the definition in part (c) above, let $E=\mathbb{B}_{\perp} \times \mathbb{B}_{\perp}$, where $\mathbb{B}=\{$ true, false $\}$, and consider $g_{(\text {false }, \text { false })}: E \rightarrow \mathbb{O}$. Show that

$$
g_{(f a l s e, f a l s e)}(x, y)=\top \text { iff } x=\text { true or } y=\text { true }
$$

(e) Let $f: D \rightarrow E$ be a function between $\operatorname{cpos} D$ and E. Show

$$
f \text { is continuous iff } \forall e \in E . \quad g_{e} \circ f \text { is continuous }
$$

[You may assume that the composition of continuous functions is continuous. It is suggested that for the "if" direction of the proof, you argue by contradiction.]
[8 marks]

