2008 Paper 8 Question 14

Denotational Semantics

- (a) Describe the properties a function between two cpos must have to be continuous. [2 marks]
- (b) Let D_1 , D_2 and E be cpos. Prove that a function $h : D_1 \times D_2 \to E$ is continuous if it is continuous in each argument separately. [You may assume standard properties of least upper bounds provided you state them clearly.] [4 marks]
- (c) Let \mathbb{O} be the cpo with two elements $\bot \sqsubseteq \top$. For a cpo E and $e \in E$, define the function $g_e : E \to \mathbb{O}$ by

$$g_e(x) = \begin{cases} \bot & \text{if } x \sqsubseteq e \\ \top & \text{if } x \not\sqsubseteq e \end{cases}$$

Show g_e is continuous.

- [4 marks]
- (d) As an example of the definition in part (c) above, let $E = \mathbb{B}_{\perp} \times \mathbb{B}_{\perp}$, where $\mathbb{B} = \{true, false\}$, and consider $g_{(false, false)} : E \to \mathbb{O}$. Show that

$$g_{(false, false)}(x, y) = \top$$
 iff $x = true$ or $y = true$

[2 marks]

(e) Let $f: D \to E$ be a function between cpos D and E. Show

f is continuous iff $\forall e \in E$. $g_e \circ f$ is continuous

[You may assume that the composition of continuous functions is continuous. It is suggested that for the "if" direction of the proof, you argue by contradiction.] [8 marks]