
2008 Paper 6 Question 6

Compiler Construction

(a) Languages like Lisp, Prolog and Python are said to be dynamically typed.
Explain this concept and its implications for the size of a run-time storage cell
needed to hold a value which may be an integer or floating-point value.

[4 marks]

(b) Consider the following object-oriented program in Java style:

class A { int a,b; };

class B extends A { int c,d1,d2,d3,d4,d5,d6,d7,d8,d9; };

...

static void f(A x) { x.a = 1; }

static void g(B x) { x.c = 2; }

static void h() { A p = new A(); f(p); g(p); }

static void k() { B p = new B(); f(p); g(p); }

static void main() { h(); k(); }

(i) Explain the run-time structure of values of type A and B. Indicate a
constraint on the layout of these structures needed to support inheritance.

[3 marks]

(ii) Indicate why the above program would not compile in Java and insert a
single cast to make it compile. Why are two casts not required?

[2 marks]

(iii) What happens when your Java program in part (ii) is executed?
[2 marks]

(iv) Make an analogy to part (a) to argue why a Java value of type A requires
more storage than that required for two integers. [2 marks]

(v) C++ traditionally allows values of type A to occupy just the space required
by two integers. Comment on the implications for safety if this were
allowed in Java. [2 marks]

(c) Explain where storage for new comes from. Some languages have a primitive
dispose which de-allocates space allocated by new, but Java does not. Explain
the implications of this for Java implementation, particularly how a program
can perform new A() every millisecond but never run out of memory. Suppose
that, while executing such a program, a new B() is executed. Explain, giving
reasons, whether this is guaranteed to succeed in a situation where exactly half
the memory available for new is in use. [5 marks]

1


