2008 Paper 12 Question 6

Compiler Construction

Consider the following grammar for expressions (where Id is a terminal symbol
representing an identifier resulting from lexical analysis):

Expr ::= 1 | 2 | Id | Expr + Expr | Expr / Expr |
Expr ~ Expr | (Expr)

Explain in what principal respect this grammar is unsatisfactory. [1 mark]

Assuming further that + is to be left-associative, ~ is to be right-associative and
/ is to be non-associative (i.e. 2/2/2 is forbidden but (2/2)/2 and 2/(2/2)
are allowed), re-write the grammar to reflect this. [4 marks]

List the terminal symbols and non-terminal symbols, and count the production
rules both in the original grammar and in the grammar in your answer to
part (b). Indicate the start symbol in both grammars. [2 marks]

Define a type or types (in C, Java, or ML) suitable for holding an abstract
syntax tree resulting from your answer to part (b). [2 marks]

Give a brief and elementary explanation of the principles of how the grammar
resulting from part (b) might be used to create a syntax analyser taking a
token stream as input (via calls to function lex()) and giving as output an
abstract syntax tree corresponding to part (d). Mention both hand-written
and automatically-generated syntax analysers. [8 marks]

Summarise any issues related to left- or right-associative operators in the
two techniques (in implementing the parser and in constructing the tool) you
outlined in part (e). [3 marks]

