2007 Paper 9 Question 16

Optimising Compilers

(a) Summarise very briefly (one short paragraph each) the overall idea behind

program analysis using
(i) abstract interpretation;
(7i) set-constraint-based (CFA-like) analysis;

(#i1) rule-based analysis.
[6 marks]

Consider the following language of integer expressions e and (integer) list
expressions F/ where n represents integer constants, x and X respectively range
over integer and list variables, @ represents integer operations (e.g. +, < etc.),
and if and IF test their first argument for zero/non-zero as in C:

e n= x|nlegDey| hd E|if(eg,eq,e2)
E = X|[]|e: E|tl E|IF(e, Eq, E>)

In escape analysis and optimisation, given a call to f such as

gle,y) = fle=x:[ly =)

we want to know whether or not the result of f can include any of the
cons-cells reachable from its arguments. A formal parameter of f that might
be incorporated into its result is known as escaping. This is useful because
if (say) formal parameter 1 to f cannot escape then cons-cells allocated for
actual parameter 1 can be allocated (more cheaply) on the stack instead of in
the heap.

This problem may be formulated as an analysis that takes an expression,
e or F, constituting the body of f. The parameters of f are the free variables,
x; and X, of its body.

Express this analysis using two of the techniques from part (a). In both cases
state how to use the analysis result for e or E to test “parameter X; definitely
does not escape from E or e”. [Hint: in some analyses it is easier to treat
the variables x; and X; just as strings, and in others as variables ranging over
{0,1}.] [5 marks each]

Indicate what changes would be necessary for one of your analyses were the
syntax also to allow a recursive call to f. [4 marks]

