Denotational Semantics

- (a) Suppose that (D, \sqsubseteq_D) and (E, \sqsubseteq_E) are cpos.
 - (i) What properties does a function $f: D \to E$ need to satisfy in order to be continuous? [2 marks]
 - (*ii*) Assume also that (C, \sqsubseteq_C) is a cpo and that $g: C \times D \to E$ is a continuous function. Let $g^*: C \to (D \to E)$ be defined by $g^*(c) = \lambda d \in D. g(c, d)$. Prove that g^* is continuous. You may refer to general facts about least upper bounds in product and function cpos provided that you state them clearly. [6 marks]
- (b) Let $\mathbf{2} = (\{\bot, \top\}, \bot \sqsubseteq \top)$ be the unique domain with two elements.
 - (i) Draw a diagram which represents the elements of the function domain $2 \rightarrow 2$ and shows their ordering; [1 mark]
 - (*ii*) Any set X can be considered as a flat domain X_{\perp} by adding a bottom element. Show that the strict continuous functions $X_{\perp} \rightarrow 2$ are in 1-1 correspondence with the subsets of X. [2 marks]
- (c) Define what is meant by an admissible subset of a domain D. [2 marks]
- (d) State the principle of Scott induction and prove its validity. [4 marks]
- (e) Suppose that D is a domain and $f: D \times D \to D$ is a continuous function satisfying the property $\forall d, e \in D$. f(d, e) = f(e, d). Let $g: D \times D \to D \times D$ be defined by $g(d_1, d_2) = (f(d_1, f(d_1, d_2)), f(f(d_1, d_2), d_2))$. Let $(u_1, u_2) = fix(g)$. Show that $u_1 = u_2$ using Scott induction. [3 marks]