2006 Paper 9 Question 9

Artificial Intelligence II

In this question we deal with a general two-class supervised learning problem. Instances are denoted by $x \in X$, the two classes by c_1 and c_2 , and $h : X \to \{c_1, c_2\}$ denotes a hypothesis. Labelled examples appear independently at random according to the distribution P on $X \times \{c_1, c_2\}$. The loss function $L(c_i, c_j)$ denotes the loss incurred by a classifier predicting c_i when the correct prediction is c_j .

(a) Show that if our choice of hypothesis h is completely unrestricted and L is the 0-1 loss function then the *Bayes optimal classifier* minimising

where the expected value is taken according to the distribution P is given by

$$h(x) = \begin{cases} c_1 & \text{if } \Pr(c_1|x) > \frac{1}{2} \\ c_2 & \text{otherwise.} \end{cases}$$

[10 marks]

(b) We now define a procedure for the generation of training sequences, denoted by s. Let \mathcal{H} be a set of possible hypotheses, let p(h) be a prior on \mathcal{H} , let p(x) be a distribution on X and let $\Pr(c|x, h)$ be a likelihood, denoting the probability of obtaining classification c given instance x and hypothesis $h \in \mathcal{H}$. A training set s is generated as follows. We obtain a single $h \in \mathcal{H}$ randomly according to p(h). We then obtain m instances (x_1, \ldots, x_m) independently at random according to p(x). Finally, these are labelled according to the likelihood such that

$$p(s|h) = \prod_{i=1}^{m} \Pr(c_i|x_i, h) p(x_i).$$

We now wish to construct a hypothesis h', not necessarily in \mathcal{H} , for the purposes of classifying future examples. The usual approach in a Bayesian context would be to construct the hypothesis

$$h'(x) = \begin{cases} c_1 & \text{if } \Pr(c_1|x,s) > \frac{1}{2} \\ c_2 & \text{otherwise.} \end{cases}$$

By modifying your answer to part (a) or otherwise, show that this remains an optimal procedure in the case of 0-1 loss.

[10 marks]