Denotational Semantics

- (a) Describe how to construct the function cpo $((D \to E), \sqsubseteq)$ of two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) . Prove that $((D \to E), \sqsubseteq)$ is a cpo. (You may use general facts about least upper bounds provided you state them clearly.) [7 marks]
- (b) The function uncurry is inverse to the function curry; it takes a continuous function in $(D_1 \to (D_2 \to E))$ as argument and yields a continuous function in $((D_1 \times D_2) \to E)$ as result. Give a definition of uncurry and show it is a continuous function.

(You may use general facts about continuous functions provided you state them clearly.) [6 marks]

(c) Exhibit two terms of PCF which are contextually equivalent and yet have distinct denotations in the domain $(\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})) \to \mathbb{B}_{\perp}$ where $\mathbb{B} = \{true, false\}$ is the set of truth values. Explain why their denotations differ. [7 marks]